Positive and negative results for Einstein metrics on quotient manifolds of $S^3 \times S^5$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Einstein metrics on Fano manifolds

This is largely an expository paper and dedicated to my friend J. Cheeger for his 65th birthday. The purpose of this paper is to discuss some of my works on the existence of Kähler-Einstein metrics on Fano manifolds and some related topics. I will describe a program I have been following for the last twenty years. It includes some of my results and speculations which were scattered in my previo...

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

4-Manifolds without Einstein Metrics

It is shown that there are infinitely many compact orientable smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.

متن کامل

Four-manifolds without Einstein Metrics

It is shown that there are infinitely many compact simply connected smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.

متن کامل

On Einstein Manifolds of Positive Sectional Curvature

Let (M,g) be a compact oriented 4-dimensional Einstein manifold. If M has positive intersection form and g has non-negative sectional curvature, we show that, up to rescaling and isometry, (M,g) is CP2, with its standard Fubini-Study metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2013

ISSN: 0035-7596

DOI: 10.1216/rmj-2013-43-3-949